Representations of Compact Groups (Part 1)
I've written a previous post on representation theory for finite groups. The representation theory of finite groups is very nice, but many of the groups whose representations we care about are not finite. For example, representations of $SU(2)$ are important for understanding the behavior of particles with nonzero spin. So we want to extend representation theory to more general groups. A nice family of groups to consider are compact groups. In many ways, compactness is a generalization of finiteness. To use an example from that link, every realvalued function on a finite set is bounded and attains its maximum. This is untrue for realvalued functions on infinite sets: consider the functions $f(x) = \tan x$ and $f(x) = x$ respectively on the interval $(0, \frac\pi 2)$. However, continuous realvalued functions on a compact interval must be bounded and must attain their maxima. Similarly, compact groups generalize finite groups, and many of the nice features of the representation theory of finite groups extend to the representation theory of compact groups. This post will mostly follow the notes about representations of compact groups available here
Compact Topological Groups
First, we will start with some nice properties of compact topological groups. Recall that a topological group is a group endowed with a topology so that multiplication and the inverse map are continuous. When studying the representation theory of finite groups, it was often convenient to sum over the elements of the group (e.g. to define our inner product on the space of characters). Clearly we cannot always sum over the elements of an infinite group. But for compact groups, we have a nice theorem that tells us that we can integrate over the group instead, which is just as good.
This theorem is tricky to prove for locally compact topological groups. But for Lie groups, it is fairly easy. So we will just show a version of the theorem for Lie groups.
First, we will show existence. Let $n$ denote the dimension of $G$. Recall that as long as $G$ is oriented, an $n$form on $G$ induces a measure. Furthermore, we recall that if we can find a nonvanishing $n$form on $G$, then $G$ must be orientable. So it is sufficient to find a leftinvariant nonvanishing $n$form on $G$. Let $\Lambda^nT_eG$ denote the space of $k$covectors on the tangent space to the identity of $G$. Pick any nonzero $\omega_e \in \Lambda^nT_eG$. Now, we can extend $\omega_e$ to a differential form on $G$. Let $L_g$ denote the automorphism of $g$ given by leftmultiplication by $g$. This is continuous. $L_{g^{1}}$ sends $g$ to $e$, so we can pull $\omega_e$ back along this map to define $\omega_g = (L_{g^{1}})^* \in \Lambda^n T_gG$. This defines a differential $n$form $\omega \in \Omega^n(G)$ on all of $G$. $\omega$ is leftinvariant by construction. \[((L_h)^* \omega)_g = (L_h)^* \omega_{hg} = (L_h)^* (L_{(hg)^{1}})^* \omega_e = (L_{(hg^{1})h})^* \omega_e =(L_{g^{1}})^* \omega_e = \omega_g\] Clearly this differential form is nonvanishing. And by negating $\omega$ if necessary, we see that $\omega$ is positive with respect to $G$'s orientation, so it defines a leftinvariant measure on $G$.
Now, you might be wondering why it is important that $G$ is compact, because the above theorems don't require compactness. The nice thing about compactness is that measures only let us integrate functions with compact support  but if $G$ is compact, then every function has compact support. So we can integrate any real (or complex) valued functions on $G$. We will write the integral of $f$ with respect to the Haar measure as $\int_G f(g)\;dg$.
In particular, we can integrate the constant function $f(g) = 1$ over compact groups. It is convenient to normalize our Haar measure so that $\int_G 1 \;dg = 1$. I will assume that all Haar measures are normalized in this way.
From now on, I'll assume that all groups are compact Lie groups unless I explicitly state otherwise.
Basic Definitions
We'll start with a whole bunch of definitions. They're essentially the same as the analogous definitions for finite groups, except we require that our maps are continuous. To do so, we have to put topologies on the vector spaces involved.
Useful Constructions
There are several simple subrepresentations we can consider.
 For any representation $V$, $\{0\} \subseteq V$ is a subrepresentation because $g \cdot 0 = 0$.
 Similarly, $V$ is a subrepresentation of itself.
 We also have a subrepresentation $V^G = \{v \in V\;\; g\cdot v = v\}$, the subspace of $G$invariants. Note that the action of $G$ on $V^G$ is trivial.
 Given any $G$linear map $A \in \Hom_G(V,W)$, the kernel is a subrepresentation of $A$ and the image is a subrepresentation of $W$.
Given two representations $(V, \phi)$ and $(W, \psi)$, there are several ways we can build new representations out of them.
 We can define a representation of $G$ on the dual space $V^* = \Hom(V, k)$ (where $k$ is the base field) by setting $g(A)(v) = A(g^{1}v)$ for $A \in \Hom(V,k)$.
 We can define a representation of $G$ on the conjugate space $\overline V$. We define $\overline V$ as follows: it is the same topological abelian group as $V$, but the scalar multiplication is changed. Let $v$ denote an element of $V$ and $\overline v$ denote the corresponding element of $\overline V$. Then we set $\lambda \overline v = \overline{\overline \lambda v}$. That is to say, we scalar multiply by the conjugate of $\lambda$ instead of by $\lambda$ itself. The action of $G$ on $\overline V$ is the same as the action of $G$ on $V$.
 We can define a representation of $G$ on $V \oplus W$ by setting $g(v,w) = (gv, gw)$.
 We can define a representation of $G$ on $V \otimes W$ by setting $g(v \otimes w) = (gv) \otimes (gw)$.
 We can define a representation of $G$ on $\Hom(V,W)$ by using the isomorphism $\Hom(V,W) \cong W \otimes V^*$ for finitedimensional $W,V$ and using our constructions for taking tensor products and duals of representations.
Note that $f^j(g^{1}v)$ is a scalar and $ge_i$ is a vector in $W$. So this is just $f^j(g^{1}v)(ge_i)$. Since $g$ acts by a linear map, we can factor out the $g$ to obtain \[(g \cdot (e_i \otimes f^j))(v) = g \cdot (f^j(g^{1}v) e_i) = g \cdot ((e_i \otimes f^j)(g^{1}v))\] So given any $A \in \Hom(V,W)$, we have $(g \cdot A)(v) = g\cdot A(g^{1}v)$.
First, suppose that $A \in \Hom(V,W)^G$. Then $g \cdot A = A$, so in particular we have $(g \cdot A)v = Av$ for any $v \in V$. Using the formula for $g \cdot A$, we see that $g \cdot A(g^{1} v) = Av$ for all $g \in G, v \in V$. Multiplying both sides by $g^{1}$, we find that $A(g^{1}v) = g^{1} Av$. Since this is true for all $g \in G$, we conclude that $A$ is $G$linear. So $A \in \Hom_G(V,W)$.
Conversely, suppose that $A \in \Hom_G(V,W)$. Then $A(gv) = g(Av)$ for all $g \in G, v \in V$. So $g^{1}A(gv) = Av$. Letting $h = g^{1}$, we see that $g A (h^{1}v) = Av$ for all $h \in G, v \in V$. So $A$ is in the subspace of invariants $\Hom(V,W)^G$.
Complete Reducibility and Schur's Lemma
These all have determinant one, and are thus invertible. Furthermore, the product of two uppertriangular matrices is an uppertriangular matrix, so this is a group. This group has a natural action on $\R^2$ given by the usual matrixvector product. This defines a representation of $G$ on $\R^2$.
Note that this representation fixes the subspace $V \subseteq \R^2$ given by
\[V = \left\{\left. \begin{pmatrix}\lambda\\0\end{pmatrix}\;\right\;\lambda\in\R\right\}\]But it doesn't fix any other nontrivial subspaces. So $\R^2$ is neither an irreducible representation nor a completely reducible representation of $G$.
It's kind of frustrating that not all representations are completely reducible. One of the nice features of finite groups is that all representations of finite groups are completely reducible. We will show that compact groups are nice in this way as well all representations of compact groups are completely reducible as well.
 Let $V, W$ be irreps of $G$. Let $A \in \Hom_G(V,W)$. Then $A$ is either 0 or an isomorphism.
 Let $V$ be a complex irrep of $G$. Then $\End_G(V) = \C \cdot \Id_V$ (i.e. any $G$linear endomorphism of $V$ is a scalar multiple of the identity)
 Since $A$ is $G$linear, we know that $\ker A, \im A$ are subrepresentations. Since $V,W$ are irreps, this implies that $\ker A$ is either $0$ or all of $V$, and $\im A$ is either $0$ or all of $W$. Thus, the only way for $A$ to be nonzero is if $\ker A = 0$ and $\im A = W$. This means that if $A$ is nonzero, it must be an isomorphism.
 Since $A$ is a complex matrix, it has an eigenvalue $\lambda$. Clearly $\lambda \Id$ is a $G$linear endomorphism of $V$. Thus, $A  \lambda \Id \in \Hom_G(V,W)$. But $A\lambda \Id$ cannot be an isomorphism. So it must be $0$. Thus, $A = \lambda \Id$.
First, we will construct one such projection. Explicitly, we define \[Av_G(v) := \int_G g \cdot v \;dg\] This operation averages over the group action, which is why we named the projection $Av_G$. To show that $Av_G$ is a projection, we have to show that it restricts to the identity on its image. First, we note that the image of $Av_G$ is simply $V^G$. We see that $\im Av_G$ is contained in $V^G$. Let $v$ be any vector in $V$. Then for any $h \in G$, we have \[h \cdot Av_G(v) = h \cdot \int_G g \cdot v \;dg = \int_G (hg) \cdot v\;dg = \int_G (hg)\cdot v \;d(hg)\] the last equality follows from the leftinvariance of our measure. So we see that $h \cdot Av_G(v) = Av_G(v)$, which implies that $\im Av_G \subseteq V^G$.
Furthermore, any vector of $V^G$ is itself fixed by $Av_G$. If $v \in V^G$, then $Av_G(v) = \int_G g \cdot v\;dg = \int_G v\;dg = v$. So in particular, $v \in \im Av_G$. Thus, we see that $\im Av_G = V^G$, and $Av_G$ acts as the identity on its image. So it is a projection.
Now, we will show uniqueness. First, note that $Av_G$ commutes with any other $T \in \End_G(V)$. \[Av_G \circ T(v) = \int_G g \cdot (Tv)\;dg = \int_G T (g\cdot v) \;dg = T \int_G g \cdot v\;dg = T \circ Av_G (v)\] Suppose that $P$ is another projection onto $V^G$. In particular, it is an element of $\End_G(V)$, so it commutes with $Av_G$. Thus, \[P = Av_G \circ P = P \circ Av_G = Av_G\]
Let $\inrp \cdot \cdot$ be any hermitian inner product on $V$. We can view $\inrp \cdot \cdot$ as an element of $\Hom(\overline V \otimes V, \C) \cong \Hom(\overline V, V^*)$. We can think of the $G$invariant inner products as elements of $\Hom(\overline V, V^*)^G$. So $Av_G \inrp \cdot \cdot$ gives us a $G$invariant inner product.
Explicitly, this just means that we can define a $G$invariant inner product $\inrp \cdot \cdot _G$ by the formula \[\inrp v w_G := \int_G \inrp {gv}{gw}\;dg\]
Let $\inrp \cdot \cdot$ be a $G$invariant inner product on $V$. Let $U = W^\perp$.
We note that $U$ is a subrepresentation of $V$. Let $u \in U$. By definition, $\inrp u w = 0$ for all $w \in W$. Since the inner product is $G$invariant, $\inrp {gu} {w} = \inrp u {g^{1}w}$. Since $W$ is a subreresentation, $g^{1}w \in W$, so $\inrp u {g^{1}w} = 0$. Thus, $\inrp {gu} w = 0$ for all $w \in W$, so we conclude that $gu \in U$.
Therefore, $V = W \oplus U$.
Just reply Maschke's theorem repeatedly. Since our vector space is finitedimensional, this process must terminate.
This follows from the above corollary and Shur's lemma.
Characters
Let $A:V \to W$ be a ($G$linear) isomorphism. Then $\psi(g)Av = A \phi(g) v$. So $\phi(g) = A^{1}\psi(g) A$. By the cyclic property of the trace, $\tr(A^{1} \psi(g) A) = \tr(\psi(g))$. Thus, \[\chi_V(g) = \tr(\phi(g)) = tr(A^{1}\psi(g)A) = \tr(\psi(g)) = \chi_W(g)\]
 $\chi_{V^*} = \chi_V^*$ where $\chi_V^*(g) = \chi_V(g^{1})$
 $\chi_{\overline V} = \overline{\chi_V}$ where $\overline{\chi_V}(g) = \overline{\chi_V(g)}$
 $\chi_{V \oplus W} = \chi_V + \chi_W$
 $\chi_{V \otimes W} = \chi_V \cdot \chi_W$
 $\chi_{\Hom(V,W)} = \chi_V^* \cdot \chi_W$
 $\chi_{V^G} = av(\chi_V)$ where $av(\chi_V) = \int_G \chi_V(g)\;dg$ considered as a constant function
 Since $g$ acts on $V^*$ by $\phi(g^{1})^T$, and transposing does not change the trace, we see that $\chi_{V^*}(g) = \chi_V(g^{1})$.
 Since scalar multiplication on $\overline V$ is conjugated, we have to take the complex conjugate of the entries in the matrix $\phi(g)$ to get the matrix which acts on $\overline V$. Thus, $\chi_{\overline V} = \overline{\chi_V}$.
 $\chi_{V \oplus W}(g) = \tr (\phi(g) \oplus \psi(g)) = \tr(\phi(g)) + \tr(\psi(g)) = \chi_V(g) + \chi_W(g)$.
 $\chi_{V \otimes W}(g) = \tr (\phi(g) \otimes \psi(g)) = \tr(\phi_V(g)) \cdot \tr(\psi_W(g)) = \chi_V(g)\chi_W(g)$.
 $\chi_{\Hom(V,W)} = \chi_{W \otimes V^*} = \chi_V^* \cdot \chi_W$.
 This one is more complicated. We need to compute $\chi_{V^G}$. To do so, we use a trick involving the averaging projection.
Note that the averaging projection $Av_G:V \to V^G$ acts as the identity on $V^G$ and acts as $0$ on the orthogonal complement to $V^G$. Thus, $\phi(g) \circ Av_G$ acts as $\phi(g)$ on $V^G$ and acts as $0$ on the orthogonal complement to $V^G$. So $\tr_{V^G} \phi(g) = \tr_V (\phi(g) \circ Av_G)$. (Here $\tr_{V^G}$ denotes the trace over $V^G$ and $\tr_V$ denotes the trace over $V$)
Therefore, \[\chi_{V^G}(g) = \tr_{V^G} \phi(g) = \tr_V (\phi(g) \circ Av_G) = \tr_V \left(\phi(g)\int_G \phi(h)dh\right) = \tr_V\int_G \phi(gh)dh\] Since our measure is leftinvariant, this is just \[\chi_{V^G}(g) = \tr_V \int_G \phi(g)dg = \int_G \tr_V \phi(g)dg = \int_G \chi_V(g)dg = av(\chi_V)\]
The previous propositions tell us that characters of $G$ are a decategorification of the category of finitedimensional representations of $G$. Decategorification is the process of taking a category, identifying isomorphic objects and forgetting all other morphisms. This eliminates a lot of useful information, but often makes the category easier to work with. For example, if we decategorify the category of finite sets, we identify all sets with the same cardinality, and forget about all other functions. This just leaves us with the natural numbers, because sets are classified by their cardinality.
Frequently, there are nice structures in the category that still make sense after decategorification. For example, decategorifying disjoint unions of finite sets gives us addition of natural numbers, and decategorifying cartesian products gives us multiplication of natural numbers.
Above, we saw that characters are a decategorification of finitedimensional $G$representations. Two characters are equal if the corresponding representations are isomorpic, and the direct sums, tensor products, etc. of $G$representations translate nicely into operations on characters. One of the most interesting aspects of this decategorification is that $\Hom$s turn into inner products.
Recall that a pair of adjoint functors are functors $F:\mathcal{C} \to \mathcal{D}, G:\mathcal{D} \to \mathcal{C}$ such that $\Hom_D(F(X), Y) \cong \Hom_C(X, G(Y))$ for all $X \in \Ob(C), Y \in \Ob(D)$. Adjoint functors are so named in analogy with adjoint linear operators (Recall that two operators $T,U$ on a Hilbert space are adjoint if $\inrp {Tx} y = \inrp x {Uy}$ for all vectors $x,y$.) This connection between inner products and Hom sets can be formalized to give a categorification of Hilbert spaces.
For an introduction to (de)categorification, you can look here (for a simpler introduction) or here (for a more complicated introduction).
Application: Irreducible Representations of $SU(2)$
Before proceeding, let's use some of this machinery we have built up so far to find all irreducible representations of $SU(2)$.
It will be helpful to use another characterization of $SU(2)$ as well.
Recall that the quaternions are defined by \[\H = \{a + jb\;\; a,b \in \C\}\] where $jb = \overline b j$. Then $S^3 = \{a + jb \in \H\;\; a^2 + b^2 = 1\}$. We have a natural action of $S^3$ on $\H$ by leftmultiplication. This gives us a twodimensional complex representation of $S^3$. Writing it out explicitly, we see that \[\begin{aligned} (a+jb) : 1 &\mapsto a+jb\\ (a+jb) : j &\mapsto  \overline b + j \overline a\\ \end{aligned}\] Thus, our representation is given by \[ (a+jb) \mapsto \begin{pmatrix} a & \overline b\\b & \overline a \end{pmatrix} \] This matrix is unitary, and has determinant $a^2 + b^2 = 1$. So this is clearly a continuous bijection from $S^3$ to $SU(2)$. You can check that this bijection is a group isomorphism.
Since $SU(2)$ acts on $\C^2$, we also get an action of $SU(2)$ on $\C[z_1, z_2]$, the space of complex polynomials in 2 variables. Given $A \in SU(2), p \in \C[z_1, z_2]$, we define \[(A \cdot p)\left(\vvec{z_1}{z_2}\right) = p \left(A^{1} \vvec {z_1}{z_2}\right)\] We note that this action does not change the degree of monomials. Thus, the space of homogeneous polynomials of degree $k$ is invariant under this action. So it is a subrepresentation. Let $V_k \subseteq \C[z_1, z_2]$ denote the space of homogeneous polynomials of degree $k$. We will show that $\{V_k\}$ are nonisomorphic irreducible representations, and every irreducible representation of $SU(2)$ is isomorphic to some $V_k$. First, we'll start with a lemma about the structure of $S^3$.
 Every element of $S^3 \subseteq \H$ can be written $ge^{i\theta}g^{1}$
 For fixed $\theta$, $\{ge^{i\theta}g^{1}\}$ is a 2D sphere with radius $\sin \theta$ intersecting $\C$ at $e^{i\theta}, e^{i\theta}$
 Using our identification of $S^3$ with $SU(2)$, we can think of points on the sphere as special unitary matrices. Unitary matrices are unitarilydiagonalizable. Clearly we can rescale these matrices so that the matrices we diagonalize with are in $SU(2)$. Finally, note that a diagonal matrix in $SU(2)$ must have the form \[\begin{pmatrix} a & 0 \\ 0 & \overline a\end{pmatrix}\] for $a \in \C$, $a^2 = 1$. Thus, diagonal matrices in $SU(2)$ correspond to points $e^{i\theta}$ on the sphere.

Since the quaternion norm is multiplicative, and elements of $S^3$ have norm 1, we see that $g e^{i\theta}g^{1} = ge^{i\theta}g^{1} = 1$. Furthermore, \[\begin{aligned} ge^{i\theta}g^{1} &= g (\cos \theta + i \sin \theta)g^{1}\\ &= \cos \theta + \sin \theta \; g i g^{1} \end{aligned}\] Now, we will consider the map $\pi:g \mapsto g i g^{1}$. Note that for unit quaternions, $g^{1} = \overline g$, the conjugate of $g$. So we can also write this map $\pi:g \mapsto g i \overline g$. Note that \[\overline{g i \overline g} = g \overline i \overline g = g i \overline g\] So $gi\overline g$ is purely imaginary. Furthermore, since $g, i$ and $\overline g$ are all unit quaternions, so is their product. Thus, we can think of $\pi$ as a map $\pi : S^3 \to S^2$, where we view $S^3$ as the unit quaternions and $S^2$ as the unit imaginary quaternions.
Furthermore, $\pi$ is surjective. If we represent vectors in $\R^3$ as imaginary quaternions, then $v \mapsto g v \overline g$ is a representation of $SU(2)$ on $\R^3$ which acts by rotations. Since we can write all rotations in this form, and the rotation group $SO(3)$ acts transitively on the twosphere, we see that $\{gi \bar g\}_{g \in SU(2)}$ covers all of $S^2$. So $\pi$ is surjective.
So since $g e^{i\theta} g^{1} = \cos \theta + \sin \theta \pi(g)$, we see that $\{g e^{i\theta} g^{1}\}$ is a sphere with radius $\sin \theta$. Now, we just have to check that the intersection of this sphere with $\C$ is $e^{\pm i \theta}$. Note that $\im \pi$ is the imaginary unit quaterions, and the only imaginary unit quaternions that lie in $\C$ are $\pm i$. Thus, the intersection of $\{g e^{i\theta} g^{1}\}$ with $\C$ is $\cos \theta \pm i \sin \theta$.
To prove this, we will use characters. For convenience, let us write $\chi_{V_k}$ as $\chi_k$. Recall that the image of $e^{i\theta} \in S^3$ in $SU(2)$ is the matrix \[\begin{pmatrix} e^{i\theta}& 0 \\ 0 & e^{i\theta}\end{pmatrix}\] Note that the eigenspaces of this operator on $V_k$ are $\{\C z_1^\ell z_2^{k\ell}\}_\ell$ with eigenvalues $\{e^{(2 \ell  k)i \theta}\}_\ell$. Therefore, \[\begin{aligned} \chi_k(e^{i\theta}) &= \sum_{\ell=0}^k e^{(2 \ell  k) i \theta}\\ &= \frac{e^{(k+1)i\theta}  e^{(k+1)i\theta}}{e^{i\theta}  e^{i\theta}}\\ &= \frac{\sin[(k+1)\theta]}{\sin\theta} \end{aligned}\] Note that all of these characters are different. This shows that all of the representations $V_k$ are distinct. Now, we will show that the characters are orthonormal.
Recall that the inner product on characters is given by \[\inrp{\chi_k}{\chi_\ell} = \int_{S^3} \chi_k(g) \overline{\chi_\ell(g)}\;dg\] Since the volume of $S^3$ is $2\pi^2$, we can write $dg = \frac 1 {2\pi^2}d\sigma$ where $d\sigma$ is the standard volume element on $S^3$. So we want to compute \[\inrp{\chi_k}{\chi_\ell} = \frac 1 {2\pi^2} \int_{S^3} \chi_k(g) \overline{\chi_\ell(g)}\;d\sigma\] Recall that characters are constant on conjugacy classes. Since every element of $SU(2)$ is conjugate to exactly two unit complex numbers, we have \[\inrp{\chi_k}{\chi_\ell} = \frac 1 {2\pi^2} \int_0^\pi \chi_k(e^{i\theta}) \overline{\chi_\ell(e^{i\theta})}\vol(\text{orbit})\;d\theta\] Above, we showed that these orbits are spheres with radius $\sin \theta$. Therefore, the volume of an orbit is $4 \pi \sin^2 \theta$. Substituting this and our expressions for the characters, we see that our inner product is \[\inrp{\chi_k}{\chi_\ell} = \frac 2 {\pi} \int_0^\pi \sin[(k+1)\theta)\sin[(\ell+1)\theta]\;d\theta\] Because sines with different frequencies are orthogonal, we conclude that \[\inrp{\chi_k}{\chi_\ell} = \delta_{k\ell}\] So our characters are orthonormal.
Finally, we will show that these are all of the irreducible representations. Suppose that $W$ was another irreducible representation. Then \[0 = \inrp{\chi_W}{\chi_k} = \int_G \chi_W(g) \overline{\chi_k(g)}\;dg\] Using the same computational tricks, we see that \[0 = \frac 2 \pi \int_0^\pi \chi_W(e^{i\theta}) \sin[(k+1)\theta]\sin\theta\;d\theta\] Since sinces form an orthonormal basis for the set of squareintegrable functions on the circle, we see that $\chi_W(e^{i\theta}) = 0$, which is impossible. Thus, every irreducible representation must be isomorphic to some $V_k$.
Characters made it fairly easy to classify all of the irreducible representations of $SU(2)$. Later on, we will generalize some of the computational techniques we used here to find the Weyl character formula and Weyl Integration Formula, which will be very useful for understanding representations. But that will have to be another post, since this one is already much longer than I realized it would be.
Yes, I am entirely agreed with this article, and I just want say that this article is very helpful and enlightening. I also have some precious piece of concerned info !!!!!!Thanks. kids quads
ReplyDeleteI was reading some of your content on this website and I conceive this internet site is really informative ! Keep on putting up. polaris ranger
ReplyDeleteThank you because you have been willing to share information with us. we will always appreciate all you have done here because I know you are very concerned with our. taxibusje rotterdam
ReplyDeleteI really like your writing style, great information, thankyou for posting. 토토사이트
ReplyDeleteHi there! Nice stuff, do keep me posted when you post again something like this! i99pro
ReplyDeleteIt is my first visit to your blog, and I am very impressed with the articles that you serve. Give adequate knowledge for me. Thank you for sharing useful material. I will be back for the more great post. 스포츠토토
ReplyDeleteHi there! Nice stuff, do keep me posted when you post again something like this! esa letter
ReplyDeleteThankyou for this wondrous post, I am glad I observed this website on yahoo. 토토사이트
ReplyDeleteThankyou for this wondrous post, I am glad I observed this website on yahoo. 메이저사이트
ReplyDeleteHello I am so delighted I located your blog, I really located you by mistake, while I was watching on google for something else, Anyways I am here now and could just like to say thank for a tremendous post and a all round entertaining website. Please do keep up the great work. 메이저사이트
ReplyDeleteHome of the weekend rental, our team is fast, efficient, courteous and passionate about having fun.i thought about this
ReplyDeleteThis is actually the kind of information I have been trying to find. Thank you for writing this information. 먹튀검증
ReplyDeleteNice post. I was checking constantly this blog and I’m impressed! Extremely useful info specially the last part I care for such information a lot. I was seeking this certain info for a long time. Thank you and good luck. 토토커뮤니티
ReplyDeleteThankyou for this wondrous post, I am glad I observed this website on yahoo. 먹튀검증
ReplyDeleteApply for LottoVIP Login Lotto VIP Apply online lottery website to join the fun with Thai lottery,pay the best price, 100% confident.หวย lottovip
ReplyDeleteHere at BUY Packaging Boxes, we specialize in Custom Packaging Boxes.http://www.buypackagingboxes.co.uk/product/customcerealboxes/
ReplyDeleteRadonisasilentkiller.It’sacolorless,odorlesswhichnaturallyoccursinthegroundbelowus.Homepage
ReplyDeleteI think this is an informative post and it is very beneficial and knowledgeable. Therefore, I would like to thank you for the endeavors that you have made in writing this article. All the content is absolutely wellresearched. Thanks... security guard services singapore
ReplyDeleteIt is a fantastic post – immense clear and easy to understand. I am also holding out for the sharks too that made me laugh. BizOp
ReplyDeletePretty nice post. I just stumbled upon your weblog and wanted to say that I have really enjoyed browsing your blog posts. After all I’ll be subscribing to your feed and I hope you write again soon! know more
ReplyDeleteWow, What an Outstanding post. I found this too much informatics. It is what I was seeking for. I would like to recommend you that please keep sharing such type of info.If possible, Thanks. 안전놀이터
ReplyDeleteGood website! I truly love how it is easy on my eyes it is. I am wondering how I might be notified whenever a new post has been made. I have subscribed to your RSS which may do the trick? Have a great day! ssrmovies
ReplyDeleteHi there! Nice stuff, do keep me posted when you post again something like this! 7starhd
ReplyDeleteI can’t imagine focusing long enough to research; much less write this kind of article. You’ve outdone yourself with this material. This is great content. Canninghill Piers
ReplyDeleteIf you are passionate about what you do, you will have endless energy to devote.Declutter for success
ReplyDeleteI can’t imagine focusing long enough to research; much less write this kind of article. You’ve outdone yourself with this material. This is great content. 토토사이트
ReplyDeleteThanks for the blog filled with so many information. Stopping by your blog helped me to get what I was looking for. Now my task has become as easy as ABC. 에볼루션카지노
ReplyDeleteJoker Gaming is better than ever. Collection of many games from Joker Game, unique, better than ever.joker slot
ReplyDeleteThis is actually the kind of information I have been trying to find. Thank you for writing this information. 안전놀이터
ReplyDeleteIt is my first visit to your blog, and I am very impressed with the articles that you serve. Give adequate knowledge for me. Thank you for sharing useful material. I will be back for the more great post. 토토사이트
ReplyDeletePlease share more like that. 무료릴게임
ReplyDeleteGreat job here on _______ I read a lot of blog posts, but I never heard a topic like this. I Love this topic you made about the blogger's bucket list. Very resourceful. 릴게임
ReplyDeleteThanks for your post. I’ve been thinking about writing a very comparable post over the last couple of weeks, I’ll probably keep it short and sweet and link to this instead if thats cool. Thanks. 안전놀이터
ReplyDeleteThat is the excellent mindset, nonetheless is just not help to make every sence whatsoever preaching about that mather. Virtually any method many thanks in addition to i had endeavor to promote your own article in to delicius nevertheless it is apparently a dilemma using your information sites can you please recheck the idea. thanks once more. 먹튀검증업체
ReplyDeleteThis particular papers fabulous, and My spouse and i enjoy each of the perform that you have placed into this. I’m sure that you will be making a really useful place. I has been additionally pleased. Good perform! 먹튀검증
ReplyDeleteFrom traditional limos to classic rides, all our cars are of firstclass quality with certified drivers for our client's safety.Cheap Party Bus Chicago
ReplyDeleteWe are Wisconsin’s best radon mitigation and radon testing specialists. With over 20 years of combined experience.why not try here
ReplyDeleteKaun Banega Crorepati Head office number, now you can feel free to call.kbc head office number
ReplyDeleteBridal shops varying in quality and the types of wedding dresses they have available.mother of the bride dresses
ReplyDeleteExcellent to be visiting your blog again, it has been months for me. Rightly, this article that I've been served for therefore long. I want this article to finish my assignment within the faculty, and it has the same topic together with your article. Thanks for the ton of valuable help, nice share. piiemail
ReplyDeleteImpressive web site, Distinguished feedback that I can tackle. Im moving forward and may apply to my current job as a pet sitter, which is very enjoyable, but I need to additional expand. Regards. research transcription services
ReplyDeleteDiscovering how 100 % free sporting betting succeeds mandates comprehension of how within the internet activities wagering is effective.검증사이트
ReplyDeleteThe source of the best online slot games It comes in the form of famous anime from Japan such as One Piece, Naruto.สมัคร PG Slot
ReplyDeleteHello I am so delighted I located your blog, I really located you by mistake, while I was watching on google for something else, Anyways I am here now and could just like to say thank for a tremendous post and a all round entertaining website. Please do keep up the great work. 먹튀검증
ReplyDeleteI’ve been searching for some decent stuff on the subject and haven't had any luck up until this point, You just got a new biggest fan!.. 88카
ReplyDeleteThank you a bunch for sharing this with all of us you actually realize what you are talking about! Bookmarked. Please also seek advice from my site =). We could have a hyperlink change contract between us! สล็อต
ReplyDeleteI exactly got what you mean, thanks for posting. And, I am too much happy to find this website on the world of Google. 검증사이트
ReplyDeleteMerely a smiling visitant here to share the love (:, btw outstanding style. 먹튀검증
ReplyDeleteAt Inovi, we’re committed to achieving the highest success rates while providing personalized care to our patients. Our Houston location offers expert care and is home to our stateoftheart embryology lab. inovifertility.com
ReplyDeleteThat is the excellent mindset, nonetheless is just not help to make every sence whatsoever preaching about that mather. Virtually any method many thanks in addition to i had endeavor to promote your own article in to delicius nevertheless it is apparently a dilemma using your information sites can you please recheck the idea. thanks once more. sbobet mobile
ReplyDeleteAttractive, post. I just stumbled upon your weblog and wanted to say that I have liked browsing your blog posts. After all, I will surely subscribe to your feed, and I hope you will write again soon! linear algebra and its applications 5th edition solutions
ReplyDeleteGreat survey, I'm sure you're getting a great response. mechanics of materials 10th edition solutions
ReplyDeleteGood website! I truly love how it is easy on my eyes it is. I am wondering how I might be notified whenever a new post has been made. I have subscribed to your RSS which may do the trick? Have a great day! canvas bag singapore
ReplyDeleteKbc Lottery Winner 2021 list for information online like Kaun Banega Crorepati Lucky draw Winners 2021.Kbc lottery winner list 2022
ReplyDeleteGreat job for publishing such a beneficial web site. Your web log isn’t only useful but it is additionally really creative too. singapore casino
ReplyDeleteI have been impressed after read this because of some quality work and informative thoughts. I just want to say thanks for the writer and wish you all the best for coming! Your exuberance is refreshing. Dallas Manslaughter Defense lawyer
ReplyDeleteKbc Sweepstakes Success 2021 listing for facts on line just like Kaun Banega Crorepati Fortuitous bring Those who win 2021.Kbc lottery number
ReplyDeleteI wanted to thank you for this great read!! I definitely enjoying every little bit of it I have you bookmarked to check out new stuff you post. 파워볼
ReplyDeleteI was reading some of your content on this website and I conceive this internet site is really informative ! Keep on putting up. 토토사이트
ReplyDeleteI haven’t any word to appreciate this post.....Really i am impressed from this post....the person who create this post it was a great human..thanks for shared this with us. 파워볼사이트
ReplyDeleteEatandgo commerce is the NO.1 eatandsee community that listens to the voices of users and always strives to create a fair Toto culture.토토사이트
ReplyDeleteAt Inovi, we’re committed to achieving the highest success rates while providing personalized care to our patients. Our Houston location offers expert care and is home to our stateoftheart embryology lab. Donor Program
ReplyDeleteLiposuction should never be considered an alternative to a healthy lifestyle, it is one of the steps that can get you to a better version of yourself through fat reduction. cheeks
ReplyDeleteWe place a great deal of attention on the values, principles, knowledge, relationships and abilities that allow for wealth creation. Our valuesbased model for wealth transition influences human, intellectual, social and structural capital to support and promote growing financial capital. Go Here
ReplyDeleteOften referred to as the "natural filler," Sculptra Aesthetic is a unique injection that stimulates your body's own collagen production. The antiaging results are both longlasting and natural looking. https://omahacosmeticcenter.com/
ReplyDeleteGreat post, and great website. Thanks for the information! pengeluaran togel hongkong
ReplyDeleteWe provide Kbc lottery winner 2022 Mumbai and Kbc lottery winner season 13 data online like Kaun Banega Crorepati Lucky Winners, Lucky Winners 2022.Kbc lottery winner
ReplyDeleteI think this is an informative post and it is very beneficial and knowledgeable. Therefore, I would like to thank you for the endeavors that you have made in writing this article. All the content is absolutely wellresearched. Thanks... 대전건마
ReplyDeleteYou have a real ability for writing unique content. I like how you think and the way you represent your views in this article. I agree with your way of thinking. Thank you for sharing. nursing test bank
ReplyDeleteQuality leads and a consistent volume of them are vital to fill your sales pipeline with the right people, the decisionmakers your sales team want to reach. We are reaching a high volume of prospects during this time. you could check here
ReplyDeleteImagen offers a variety of advanced treatments and procedures, unavailable at any other clinic in Nebraska. Our boardcertified physicians are highly trained in the most advanced facial rejuvenation techniques, performing thousands of injections and cosmetic procedures each year. Discover More
ReplyDeleteBest Plumbers take the listings of plumbers published in our plumbing directory very serious, and try hard to provide accurate.plumber directory
ReplyDeleteProvides the highest odds in the industry, covering matches from around the world, with multiple guesses such as handicaps.Hypebetcash
ReplyDeleteI was looking at some of your posts on this website and I conceive this web site is really instructive! Keep putting up.. 현금바둑이
ReplyDeleteOnly strive to mention one's content can be as incredible. This clarity with your post is superb! Thanks a lot, hundreds of along with you should go on the pleasurable get the job done. 온라인바둑이
ReplyDeleteSelecting The Right Services Centre For You.Siemens Service Centre
ReplyDeleteKbc Lottery Winner 2022 list for information online like Kaun Banega Crorepati Lucky draw Winners 2022.kbc office number
ReplyDeletePositive site, where did u come up with the information on this posting?I have read a few of the articles on your website now, and I really like your style. Thanks a million and please keep up the effective work. 美国作业代写
ReplyDeleteWe provide Kbc lottery winner 2022 Mumbai and Kbc lottery winner season.Kbc online game winner
ReplyDeleteThis is my first time i visit here. I found so many interesting stuff in your blog especially its discussion. From the tons of comments on your articles, I guess I am not the only one having all the enjoyment here keep up the good work http://www.toryburchoutlet.org/
ReplyDeleteHello, this weekend is good for me, since this time i am reading this enormous informative article here at my home. http://digitalanalog.in/
ReplyDeleteYou made such an interesting piece to read, giving every subject enlightenment for us to gain knowledge. Thanks for sharing the such information with us to read this... https://dynamichealthstaff.com/nursingjobsinkuwait
ReplyDeleteThanks for posting this info. I just want to let you know that I just check out your site and I find it very interesting and informative. I can't wait to read lots of your posts. 먹튀폴리스
ReplyDeleteKbc Financial success 2022 showing with respect to truth on the internet like Kaun Banega Crorepati Fortuitous draw People acquire 2022.Kbc official website
ReplyDeleteIt is doing accomplice with, yet look at the information at this space. Eyes specialist in delhi
ReplyDeleteRepair in UAE provides 24/7 emergency services related to property maintenance services covering plumbing,appliances.Bosch Service Center
ReplyDeleteA good termites for one'ohydrates dwelling bring about regrettable effects, if he does not dealt with around ideal time.Pest Control Service Lahore
ReplyDeleteLavish Men's Salon is now proud to offer complete range of hair stylinghttps://lavishsaloon.com.pk
ReplyDeleteToday Kbc lottery champ 2022 Mumbai as well as Kbc lottery champ month roughly 13 data files information online. Fortunate enough Winners 2022.Kbc lottery winner
ReplyDeletePreviously Kbc lottery champ 2022 Mumbai and in addition Kbc lottery champ season and maybe 13 knowledge archives online. Fortunate enough Winners 2022.kbc head office
ReplyDelete바카라사이트
ReplyDeleteThis is my website and it has been very helpful. Guys, this is a really good post here. Thank you for taking your valuable time to post this valuable information. Quality content is always what attracts visitors. You are so cool! Thanks for getting started.
Here is my website. Please leave a comment on my site as well.
You know your projects stand out of the herd. There is something special about them. It seems to me all of them are really brilliant! Lamborghini car parts
ReplyDeleteKbc official website list for information online like Kaun Banega Crorepati Lucky draw Winners 2022.Kbc winner list 2022
ReplyDeleteTravel Guides by the Experienced Tourist Consulter.We are a professional and experienced tourism consultant.travelguidline.com
ReplyDeleteWe surely are stuck in a hectic routine with our education and job every day.how to get rid of sugar ants
ReplyDeleteOur totostation is always safe and recommends only major toto sites certified by the eatandrun verification.토토사이트
ReplyDeleteAt Simplibuy we specialize in servicing independent healthcare facilities.https://simplibuy.ca/
ReplyDeleteEmergency Dental Center provides sameday emergency and routine dental care for Houston and the surrounding areas.emergency dental center
ReplyDeleteYoure thus great! We don’t suppose I have discover anything like this just before. So great to locate an individual with some authentic applying for grants this topic. realy thank you for beginning this particular up. this web site is something that’s needed on the web, somebody with a little originality. beneficial job for bringing one thing new to the internet! 먹튀검증커뮤니티
ReplyDeleteI am always looking for some free kinds of stuff over the internet. There are also some companies which give free samples. But after visiting your blog, I do not visit too many blogs. Thanks. 토토사이트
ReplyDeleteAhdena. Digital Creator. ✨Revitalizing Faith Continuing to open my heart to the beauty of Islam.https://ahdena.com/
ReplyDeleteWhen I originally commented I clicked the Notify me when new comments are added checkbox and now each time a comment is added I receive four emails with the same comment. Can there be however you possibly can get rid of me from that service? Thanks! สล็อต
ReplyDelete