Milnor's Lobachevsky Function

Definition

Л(x):=0xlog2sintdt\text{Л}(x) := -\int_0^x \log \left| 2 \sin t\right|\;dt

Note that Л(x)=log2sinxЛ(x)=cotx\begin{aligned} \text{Л}'(x) &= - \log |2 \sin x| \\ \text{Л}''(x) &= -\cot x \end{aligned}

The definition looks very strange. It's probably easiest to think of Л as being defined by the differential equation Л(x)=cotx \text{Л}''(x) = -\cot x subject to the initial conditions Л(0)=0Л(π2)=0\begin{aligned} \text{Л}(0) &= 0\\ \text{Л}'\left(\frac \pi 2\right) &= 0\\ \end{aligned}

Useful Facts

A Circumradius Forumla

We begin with a seemingly-unrelated formula about the circumcircle of a triangle.

Let tijkt_{ijk} be a triangle with edge lengths ij,jk,ki\ell_{ij}, \ell_{jk}, \ell_{ki} and angles αijk,αjki,αkij\alpha_{ij}^k, \alpha_{jk}^i, \alpha_{ki}^j.
The radius of the circumcircle of tijkt_{ijk} is given by R=jk2sinαjkiR = \frac{\ell_{jk}}{2 \sin \alpha_{jk}^i}.
Proof

We place our triangle inside of its circumcircle.

cc is the center of the circle. We draw a diagonal passing though kk, and name the opposite point rr. Note that angle kjrk-j-r must be a right angle, since the line kr\overline{kr} is a diameter of the circle. We also place a point ss such that the angle ksjk-s-j is a right angle.

Note that angle krjk-r-j must equal angle αjki\alpha_{jk}^i since both subtend the same arc between kk and jj. Therefore, triangle tiskt_{isk} is similar to triangle trjkt_{rjk}. In particular, this means that krkj=iksk\frac {\ell_{kr}}{\ell_{kj}} = \frac {\ell_{ik}}{\ell_{sk}} Note that sk=iksinαjki\ell_{sk} = \ell_{ik} \sin \alpha_{jk}^i. Furthermore, rk=2R\ell_{rk} = 2R. Thus, we see that 2Rkj=ikiksinαjki\frac {2R}{\ell_{kj}} = \frac {\ell_{ik}}{\ell_{ik} \sin \alpha_{jk}^i} Simplifying, we conclude that R=jk2sinαjkiR = \frac{\ell_{jk}}{2\sin\alpha_{jk}^i}

Energy Derivative

Futhermore, let λmn=2logmn\lambda_{mn} = 2 \log \ell_{mn}. We define a function f(λij,λjk,λki)=12(αjkiλjk+αkijλki+αijkλij)+Л(αjki)+Л(αkij)+Л(αijk) f( \lambda_{ij}, \lambda_{jk}, \lambda_{ki}) = \frac 12 \big( \alpha_{jk}^i \lambda_{jk} + \alpha_{ki}^j \lambda_{ki} + \alpha_{ij}^k \lambda_{ij}\big) + \text{Л}( \alpha_{jk}^i) + \text{Л}( \alpha_{ki}^j) + \text{Л}( \alpha_{ij}^k)
fλjk=12αjki\pd f {\lambda_{jk}} = \frac 12 \alpha_{jk}^i
Proof

Using the circumradius formula, this becomes a straightforward computation.

fλjk=12αjki+(12λjklog2sinαjki)αjkiλjk+(12λkilog2sinαkij)αkijλjk+(12λijlog2sinαijk)αijkλjk=12αjki+log(jk2sinαjki)αjkiλjk+log(ki2sinαkij)αkijλjk+log(ij2sinαijk)αijkλjk\begin{aligned} \pd f {\lambda_{jk}} &= \frac 12 \alpha_{jk}^i + \left(\frac 12\lambda_{jk} - \log |2 \sin \alpha_{jk}^i| \right) \pd {\alpha_{jk}^i}{\lambda_{jk}}\\ &\quad+ \left(\frac 12\lambda_{ki} - \log |2 \sin \alpha_{ki}^j| \right) \pd {\alpha_{ki}^j}{\lambda_{jk}} + \left(\frac 12 \lambda_{ij} - \log |2 \sin \alpha_{ij}^k| \right) \pd {\alpha_{ij}^k}{\lambda_{jk}}\\ &= \frac 12 \alpha_{jk}^i + \log\left(\frac {\ell_{jk}}{2 \sin \alpha_{jk}^i}\right) \pd {\alpha_{jk}^i}{\lambda_{jk}} + \log\left(\frac {\ell_{ki}}{2 \sin \alpha_{ki}^j}\right) \pd {\alpha_{ki}^j}{\lambda_{jk}} + \log\left(\frac {\ell_{ij}}{2 \sin \alpha_{ij}^k}\right) \pd {\alpha_{ij}^k}{\lambda_{jk}} \end{aligned} By the circumradius formula, each of those log terms is just logR\log R. (Equivalently, we could just use the law of sines here to observe that all of the terms are equal. It is not actually important what they are equal to). Thus, we have fλjk=12αjki+logRλjk(αjki+αkij+αijk)\begin{aligned} \pd f {\lambda_{jk}} &= \frac 12 \alpha_{jk}^i + \log R \pd{}{\lambda_{jk}} \left(\alpha_{jk}^i + \alpha_{ki}^j + \alpha_{ij}^k\right) \end{aligned} Since the sum of the angles in a triangle is always π\pi, the derivative on the right vanishes. Thus, we obtain the desired equality fλjk=12αjki\begin{aligned} \pd f {\lambda_{jk}} &= \frac 12 \alpha_{jk}^i \end{aligned}

Leave a Comment

No comments:

Powered by Blogger.