Mobius Transformations and Holomorphic Maps
Möbius Transformations
Möbius transformations, also called fractional linear transformations, are complex functions of the form \[\varphi:z \mapsto \frac{az + b}{cz + d}\] where $a,b,c,d$ are complex numbers and $\det \mmat a b c d \neq 0$.
If we use projective coordinates on $\C$ (i.e. think of $z \in \C$ as the set of all $[u,v] \in \C^2$ with $z = \frac uv$), then the Möbius transformations become matrices \[\phi: \vvec z 1 \mapsto \mmat a b c d \vvec z 1 = \vvec {az + b}{cz + d} \sim \frac{az + b}{cz + d}\] You can check that multiplying together these matices gives the composition of the corresponding Möbius transformations. Using this perspective, we see that the nonzero determinant condition tells us that Möbius transformations are invertible.
If we multiply $a,b,c,d$ by the same nonzero complex number, then the Möbius transformation does not change. So Möbius transformations can be identified with the projective general linear group $PGL(2,\C)$. Since we are allowed to rescale the matrix entries, we can use the projective special linear group $PSL(2,\C)$ instead. $PSL(2,\C)$ is simple, so it must precisely capture the Möbius transformations.
Now, the projective coordinates don't just describe the complex plane. They add one point to the plane, $[1, 0]$, which turns the complex plane $\C$ into the Riemann sphere $\hat \C$. So a Möbius transformation maps the complex plane onto the sphere, applies some sort of transformation to the sphere, and maps the sphere back onto the plane. Two natural questions are: "What is the map between the plane and the sphere?" and "What maps do we apply to the sphere?".
What is the map between the plane and the sphere?
We can break this map from the plane to the sphere into multiple parts. First, we have a map \[ \begin{aligned} f & : \C \to \C^2 \cong \R^4\\ f & : z \mapsto \vvec z 1 \end{aligned} \] Next, we project from $\R^4$ to $\S^3$ by identifying positive scalar multiples of each other (since the image of $f$ does not include $0$, this is okay). This corresponds to identifying vectors in $\C^2$ which are positive real scalar multiples of each other.
Finally, we project from $\S^3$ to $\S^2$ with the Hopf fibration. This corresponds to identifying vectors in $\C^2$ which differ in phase (i.e. a complex number of unit norm).
Alternatively, we can think of this map as stereographic projection. If we first quotient $\C^2$ by phase, we can identify the image of the complex plane under $f$ with the plane of height-1 in $\C \times \R \cong \R^3$. Then, quotienting out by positive scalar multiplication is precisely stereographic projection onto the unit sphere.
What maps do we apply to the sphere?
We apply a linear map of determinant 1 to $\C^2$. TODO
Conformal Maps
Conformal maps have many nice properties. Directly from the definition, we can see that conformal maps preserve angles. I don't currently understand the more complicated nice properties.
Holomorphic Functions
The Cauchy-Riemnann equations give a necessary and sufficient condition for a function to be holomorphic. Let $f(x + iy) = u(x,y) + i v(x,y)$ where $u, v : \R^2 \to \R$. Then $f$ is holomorphic if and only if \[\begin{aligned} \pd u x &= \pd v y\\ \pd u y &= -\pd v x \end{aligned}\]
We can express the Cauchy-Riemnann equations nicely using the Wirtinger derivative. Let \[\pdo{\bar z} := \frac 12 \left(\pdo x + i \pdo y\right)\] Then the Cauchy-Riemann equations are simply the statment \[\pd f {\bar z} = 0\]
Now, let's look at $\C$ as a 2-dimensional real manifold with the standard metric using the identification $\C \sim \R^2$. The differential of $f = u+iv: \C \to \C$ is given by the jacobian \[f_* = \mmat {\pd ux} {\pd vx} {\pd uy} {\pd vy}\] By the Cauchy-Riemann equations, this must have the structure \[f_* = \mmat a {-b} b a\] where $a = \pd u x, b = \pd u y$ are real.
Now, we can compute the pullback of the Euclidean metric on $\C$. \[\begin{aligned} f^*g(v_1, v_2) &= g(f_*v_1, f_*v_2)\\ &= (f_*v_1)^T (f_*v_2)\\ &= v_1^T f_*^T f_* v_2 \end{aligned}\] So the pullback of the standard metric on $\C$ is given by $f_*^T f_*$. Using our expression for $f_*$, we see that \[\begin{aligned} f_*^Tf_* &= \mmat a b {-b} a \mmat a {-b} b a\\ &= \mmat{a^2 + b^2} 0 0 {a^2 + b^2}\\ &= (a^2 + b^2)\mathbb{I} \end{aligned}\] So the pullback of the metric is a scalar multiple of the metric. Thus, the Cauchy-Rimann equations tell us that holomorphic maps are confomal!
Conversely, suppose $f : \C \to \C$ is conformal. Let \[f_* = \mmat a b c d\] Again, the pullback of the metric is \[\begin{aligned} f_*^Tf_* &= \mmat a c b d \mmat a b c d\\ &= \mmat {a^2 + c^2} {ab+cd} {ab+cd} {b^2+d^2} \end{aligned}\] Since $f$ is conformal, we know that this is a scalar multiple of the identity. So $ab+cd = 0$, and $a^2 + c^2 = b^2 + d^2$.
You can solve this to find two solutions: $a=d, b=-c$ (in which case $f$ is holomorphic), or $a=-d, b=c$ (in which case $f$ is antiholomorphic).
So the only conformal maps $\C \to \C$ are holomorphic and antiholomorphic functions. In particular, the only orientation-preserving conformal maps are holomorphic functions.
Automorphisms of the Disk
This machinery of holomorphic functions allows us to nicely characterize the conformal automorphisms of the open unit disk (i.e. invertible conformal maps $D \to D$). As we saw above, it suffices to characterize holomorphic automorphisms of the disk.
Since $f$ is holomorphic, we can expand it in a Taylor expansion $f(z) = \sum_{n \geq 0} a_n z^n$. Since $f$ fixes the origin, $a_0 = 0$. So we can define $g(z) = \frac{f(z)}{z}$ by dividing the series expansion by $z$ term by term. This yields the holomorphic function \[g(z) := \begin{cases} \frac{f(z)}z & z \neq 0\\ f'(0)&z = 0\end{cases}\] Consider the closed disk $D_r = \{z \;:\; |z| \leq r\}$ for $r < 1$. By the maximum modulus principle, $g$ achieves its maximum on $D_r$ on $\partial D_r$. Let $z_r \in \partial D_r$. Note that \[\begin{aligned} |g(z_r)| &= \left|\frac{f(z_r)}{z_r}\right|\\ &\leq \frac 1 r \end{aligned}\]
Taking a limit as $r \to 1$, we see that on the open unit disk, $|g|$ is bounded by 1. And again by the maximum modulus principle, if it achieves its maximum anywhere on the disk, then it is constant.
Let $f$ be an automorphism of the disk. Note that $f^{-1}$ is also an automorphism. So the Schwarz lemma applies to both. Thus,
\[\begin{aligned} |f(z)| &\leq |z|\\ &= |f^{-1}(f(z))|\\ &\leq |f(z)| \end{aligned}\] Therefore, $|f(z)| = |z|$ on the disk, so $f$ is a rotation.
I’m going to read this. I’ll be sure to come back. thanks for sharing. and also This article gives the light in which we can observe the reality. this is very nice one and gives indepth information. thanks for this nice article... directions
ReplyDeleteINTERNET SCAM ALERT‼️
ReplyDeleteThe internet today is full of SCAM ADS, mostly in comments of various sites and blogs. A large number of individuals have been victims of scam and lost a lot of money to SCAMMERS. Most of the common scam you can see are -:
❌BANK LOAN SCAM. ❌BINARY OPTIONS SCAM.
❌MONEY MULTIPLICATION SCAM. ❌HACKING SCAM. ❌GETTING DEGREE SCAM. ❌SHOPPING SCAM and lost more..........
But here is a good news to everyone who has been a victim of INTERNET SCAM❗️
You can get your money back from the scammer, and can even get more than what you lost, No Authorities will not been involve just the genius of our skill.
WHO ARE WE⁉️
We are PYTHONAX ! A group of skilled Hackers who have dedicated our time to helping individuals to get back thier money from INTERNET SCAMMERS. A research was carried out and an approximation of more than $3billion USD annually was said to be lost to INTERNET SCAM. This is so wrong and that’s why we have decided to help individuals get thier money.
HOW DO WE OPERATE⁉️
We use a RAT(Remote Access Trojan) to take over the SCAMMER(s) device(Phone or Computer) and take back your money by accessing their Bitcoin wallets or Bank Account. Most of this scammers use their Bitcoin to save money they get from SCAM activities. This is because Bitcoin keeps the money hidden from FINANCIAL INSTITUTIONS BOARD from getting to see the money they can’t give account for.
If you have been a Victim of INTERNET SCAM, then you should contact us via the Email below
Email-: pythonaxservices@gmail.com
pythonaxhacks@gmail.com
Pythonax.
2020 © All Right Reserved.
Yes i am totally agreed with this article and i just want say that this article is very nice and very informative article.I will make sure to be reading your blog more. You made a good point but I can't help but wonder, what about the other side? !!!!!!Thanks the page
ReplyDeleteGreat job for publishing such a nice article. Your article isn’t only useful but it is additionally really informative. Read more info about life coach for young women. Thank you because you have been willing to share information with us.
ReplyDeleteWelcome to the future! Financing made easy with Prof. Mrs. DOROTHY JEAN INVESTMENTS
ReplyDeleteHello, Have you been looking for financing options for your new business plans, Are you seeking for a loan to expand your existing business, Do you find yourself in a bit of trouble with unpaid bills and you don’t know which way to go or where to turn to? Have you been turned down by your banks? MRS. DOROTHY JEAN INVESTMENTS says YES when your banks say NO. Contact us as we offer financial services at a low and affordable interest rate of 2% for long and short term loans. Interested applicants should contact us for further loan acquisition procedures via profdorothyinvestments@gmail.com
We invest in all profitable projects with cryptocurrencies. I'm here to share an amazing life changing opportunity with you. its called Bitcoin / Forex trading options, Are you interested in earning a consistent income through binary/forex trade? or crypto currency trading. An investment of $100 or $200 can get you a return of $2,840 in 7 days of trading and you get to do this from the comfort of your home/work. It goes on and on The higher the investment, the higher the profits. Your investment is safe and secured and payouts assured 100%. if you wish to know more about investing in Cryptocurrency and earn daily, weekly OR Monthly in trading on bitcoin or any cryptocurrency and want a successful trade without losing Contact MRS.DOROTHY JEAN INVESTMENTS profdorothyinvestments@gmail.com
categories of investment
Cryptocurrency
Loan Offer
Mining Plan
Business Finance Plan
Binary option Trade Plan
Forex trade Plan
Stocks market Trade Plan
Return on investment (ROI) Plan
Gold and Silver Trade Plan
Oil and Gas Trade Plan
Diamond Trade Plan
Agriculture Trade Plan
Real Estate Trade Plan
YOURS IN SERVICE
Mrs. Dorothy Pilkenton Jean
Financial Advisor on Bank Instruments,
Private Banking and Client Services
Email Address: profdorothyinvestments@gmail.com
Operation: We provide Financial Service Such As Bank Instrument
From AA Rate Banks, Cash Loan,BG,SBLC,BOND,PPP,MTN,TRADING,FUNDING MONETIZING etc.
Everyone deserves to spend their time doing what they love. If you love sports, starting a sports blog can be an enjoyable way to take your love of the game to the next level.메이저사이트
ReplyDelete